Part Number Hot Search : 
013TR DF15005 2SD88205 LD105 BU180A 15004 15011 GP7NC6
Product Description
Full Text Search
 

To Download APA0714XI-TRG Datasheet File

  If you can't view the Datasheet, Please click here to try to view without PDF Reader .  
 
 


  Datasheet File OCR Text:
  c o p y r i g h t ? a n p e c e l e c t r o n i c s c o r p . r e v . a . 2 - a p r . , 2 0 1 0 w w w . a n p e c . c o m . t w 1 a n p e c r e s e r v e s t h e r i g h t t o m a k e c h a n g e s t o i m p r o v e r e l i a b i l i t y o r m a n u f a c t u r a b i l i t y w i t h o u t n o t i c e , a n d a d v i s e c u s t o m e r s t o o b t a i n t h e l a t e s t v e r s i o n o f r e l e v a n t i n f o r m a t i o n t o v e r i f y b e f o r e p l a c i n g o r d e r s . 3w mono fully differential audio power amplifier a p a 0 7 1 4 t h e a p a 0 7 1 4 i s a m o n o , f u l l y d i f f e r e n t i a l c l a s s - a b a u d i o a m p l i f i e r w h i c h c a n o p e r a t e w i t h s u p p l y v o l t a g e f r o m 2 . 4 v t o 5 v a n d i s a v a i l a b l e i n msop8, msop8p, or tdfn3x3-8 package. t h e b u i l t - i n f e e d b a c k r e s i s t o r s c a n m i n i m i z e t h e e x t e r n a l c o m p o n e n t c o u n t a n d s a v e t h e p c b s p a c e . h i g h p s r r a n d f u l l y d i f f e r e n t i a l a r c h i t e c t u r e i n c r e a s e i m m u n i t y t o n o i s e a n d r f r e c t i f i c a t i o n . i n a d d i t i o n t o t h e s e f e a t u r e s , a s h o r t s t a r t u p t i m e a n d s m a l l p a c k a g e s i z e m a k e t h e a p a 0 7 1 4 a n i d e a l c h o i c e f o r mobil phones a n d portable devices . t h e a p a 0 7 1 4 a l s o i n t e g r a t e s t h e d e - p o p c i r c u i t r y t h a t r e - d u c e s t h e p o p s a n d c l i c k n o i s e s d u r i n g p o w e r o n / o f f a n d s h u t d o w n m o d e o p e r a t i o n . b o t h t h e r m a l a n d o v e r - c u r - r e n t p r o t e c t i o n s a r e i n t e g r a t e d t o a v o i d t h e i c t o b e d e - s t r o y e d b y o v e r t e m p e r a t u r e a n d s h o r t - c i r c u i t . t h e a p a 0 7 1 4 i s c a p a b l e o f d r i v i n g 3 w a t 5 v i n t o 3 w s p e a k e r . f e a t u r e s g e n e r a l d e s c r i p t i o n a p p l i c a t i o n s mobil phones portable devices o p e r a t i n g v o l t a g e : 2 . 4 v ~ 5 . 5 v fully differential class-ab amplifier high psrr and excellent rf rectification immunity low crosstalk 3w output power into 3 w l o a d a t v d d = 5 v t h e r m a l a n d o v e r - c u r r e n t p r o t e c t i o n s b u i l t - i n f e e d b a c k r e s i s t o r s e l i m i n a t e e x t e r n a l c o m p o n e n t s c o u n t s space saving package - msop-8 - msop-8p - tdfn3x3-8 l e a d f r e e a n d g r e e n d e v i c e s a v a i l a b l e ( r o h s c o m p l i a n t ) s i m p l i f i e d a p p l i c a t i o n c i r c u i t apa0714 input speaker linn linp loutp loutn p i n c o n f i g u r a t i o n bypass 2 7 gnd inp 3 inn 4 6 vdd 5 outp 8 outn sd 1 msop-8 top view bypass 2 7 gnd inp 3 inn 4 6 vdd 5 outp 8 outn sd 1 msop-8p top view bypass 2 inp 3 inn 4 sd 1 7 gnd 6 vdd 5 outp 8 outn tdfn3x3-8 top view =thermal pad (connected the thermal pad to gnd plane for better heat dissipation)
c o p y r i g h t ? a n p e c e l e c t r o n i c s c o r p . r e v . a . 2 - a p r . , 2 0 1 0 w w w . a n p e c . c o m . t w 2 a p a 0 7 1 4 symbol parameter rating unit v dd supply voltage - 0.3 to 6 v input voltage (inn, inp, sd to gnd) - 0.3 to 6 v in input voltage (outn, outp to gnd) - 0.3 to v dd +0.3 v t j maximum junction temperature 150 o c t stg storage temperature range - 65 to +150 o c t s dr maximum soldering temperature range , 10 seconds 260 o c p d power dissipation internally limited w o r d e r i n g a n d m a r k i n g i n f o r m a t i o n a b s o l u t e m a x i m u m r a t i n g s ( n o t e 1 ) n o t e : a n p e c l e a d - f r e e p r o d u c t s c o n t a i n m o l d i n g c o m p o u n d s / d i e a t t a c h m a t e r i a l s a n d 1 0 0 % m a t t e t i n p l a t e t e r m i n a t i o n f i n i s h ; w h i c h a r e f u l l y c o m p l i a n t w i t h r o h s . a n p e c l e a d - f r e e p r o d u c t s m e e t o r e x c e e d t h e l e a d - f r e e r e q u i r e m e n t s o f i p c / j e d e c j - s t d - 0 2 0 d f o r m s l c l a s s i f i c a t i o n a t l e a d - f r e e p e a k r e f l o w t e m p e r a t u r e . a n p e c d e f i n e s ? g r e e n ? t o m e a n l e a d - f r e e ( r o h s c o m p l i a n t ) a n d h a l o g e n f r e e ( b r o r c l d o e s n o t e x c e e d 9 0 0 p p m b y w e i g h t i n h o m o g e n e o u s m a t e r i a l a n d t o t a l o f b r a n d c l d o e s n o t e x c e e d 1 5 0 0 p p m b y w e i g h t ) . note 1: absolute maximum ratings are those values beyond which the life of a device may be impaired. exposure to absolute maximum rating conditions for extended periods may affect device reliability. t h e r m a l c h a r a c t e r i s t i c s symbol parameter typical value unit q ja thermal resistance - junction to ambient (note 2) msop - 8 msop - 8p tdfn3x3 - 8 200 50 52 o c /w q jc thermal resistance - junction to case (note 3) msop - 8p tdfn3x3 - 8 10 11 o c /w note 2: please refer to ? layout recommendation?, the thermal pad on the bottom of the ic should soldered directly to the pcb?s thermalpad area that with several thermal vias connect to the ground plan, and the pcb is a 2-layer, 5-inch square area with 2oz copper thickness . note 3: the case temperature is measured at the center of the thermal pad on the underside of the msop-8p and tdfn3x3-8 package. apa0714 handling code temperature range package code xxxxx - date code assembly material apa0714 x : apa0714 xa : apa0714 qb : xxxxx - date code xxxxx - date code apa 0714 xxxxx a0714 xxx xx package code x : msop-8 xa : msop-8p qb : tdfn3x3-8 operating ambient temperature range i : -40 to 85 o c handling code tr : tape & reel assembly material g : halogen and lead free device a0714 xxx xx
c o p y r i g h t ? a n p e c e l e c t r o n i c s c o r p . r e v . a . 2 - a p r . , 2 0 1 0 w w w . a n p e c . c o m . t w 3 a p a 0 7 1 4 symbol parameter rating unit v dd supply voltage 2 . 4 ~ 5.5 v v ih high level threshold voltage sd 1.8 ~ v dd v v il low level threshold voltage sd 0 ~ 0. 35 v v i c common mode input voltage 0.5 ~ v dd - 0.5 v operating ambient temperature range - 40 ~ 85 o c operating junction temperature range - 40 ~ 125 o c speaker resistance 3 ~ w r e c o m m e n d e d o p e r a t i n g c o n d i t i o n s apa0714 symbol parameter test conditions min. typ. max. unit i dd supply current - 3 6 ma i sd shutdown current l sd =rsd =0v - - 5 m a i i input current lsd, rsd - 0. 1 - m a gain r l =4 w 36k w ri 40k w ri 44k w ri v/v t start - up start - up time fr om end of shutdown c b =0.22 m f - 65 - ms r sd resistance from shutdown to gnd 90 100 110 k w v dd =5v, t a =25 x c r l = 3 w - 2.4 - r l = 4 w - 2.1 - thd +n =1% r l = 8 w 1 1.3 - r l = 3 w - 3 - r l = 4 w - 2.6 - p o output power thd +n =1 0 % f in =1 k hz r l = 8 w - 1.6 - w r l = 4 w p o = 1.5 w - 0.05 - thd+n total harmonic distortion pulse noise f in =1 k hz r l = 8 w p o = 0.9 w - 0.035 - % psrr power supply rejection ratio c b =0.22 m f , r l =8 w , v rr =0.2v pp , f in = 217 hz - 80 - db cmrr common - mode rejection ratio c b =0.22 m f, r l =8 w , v ic =0.2v pp , f in = 217 hz - 60 - db s/n signal to noise ratio w ith a - weighted filter , p o = 1.3 w, r l = 8 w - 105 - db v os output offset voltage r l = 8 w - 5 20 mv vn noise output voltage c b =0.22 m f, w ith a - weight ing filter - 15 - m v (rms) e l e c t r i c a l c h a r a c t e r i s t i c s v dd =5v, gnd=0v, t a = 25 o c (unless otherwise noted)
c o p y r i g h t ? a n p e c e l e c t r o n i c s c o r p . r e v . a . 2 - a p r . , 2 0 1 0 w w w . a n p e c . c o m . t w 4 a p a 0 7 1 4 e l e c t r i c a l c h a r a c t e r i s t i c s ( c o n t . ) v d d = 5 v , g n d = 0 v , t a = 2 5 o c ( u n l e s s o t h e r w i s e n o t e d ) apa0714 symbol parameter test conditions min. typ. max. unit v dd = 3.6 v, t a =25 x c r l = 3 w - 1.2 - r l = 4 w - 1 - thd +n =1% r l = 8 w - 0.65 - r l = 3 w - 1.5 - r l = 4 w - 1.3 - p o output power thd +n =1 0 % f in =1khz r l = 8 w - 0.8 - w r l = 4 w p o = 0.7 w - 0.07 - thd+n tota l harmonic distortion pulse noise f in =1khz r l = 8 w p o = 0.45 w - 0.05 - % psrr power supply rejection ratio c b =0.22 m f, r l =8 w , v rr =0.2v pp , f in = 217 hz - 78 - cmrr common - mode rejection ratio c b =0.22 m f, r l =8 w , v ic =0.2v pp , f in = 21 7 hz - 60 - s/n signal to noise ratio w ith a - weight ing filter , p o = 0.65 w, r l = 8 w - 103 - db v os output offset voltage r l = 8 w - 5 20 mv vn noise output voltage c b =0.22 m f, w ith a - weight ing filter - 15 - m v (rms) v dd = 2.4 v, t a =25 x c r l = 3 w - 0. 5 - r l = 4 w - 0.45 - thd + n =1% r l = 8 w - 0.3 - r l = 3 w - 0.7 - r l = 4 w - 0.6 - p o output power thd +n =1 0 % f in =1 k hz r l = 8 w - 0.35 - w p o = 0.3 w, r l = 4 w - 0.1 - thd+n total harmonic distortion pulse noise f in = 1khz p o = 0.2 w, r l = 8 w - 0.08 - % psrr power supply rejection ratio c b =0.22 m f, r l =8 w , v rr =0.2v pp , f in = 217 hz - 75 - cmrr common - mode rejection ratio c b =0.22 m f, r l =8 w , v ic =0.2v pp , f in = 217 hz - 60 - s/n signal to noise ratio w ith a - weight ing filter , p o = 0.3 w, r l = 8 w - 100 - db v os output offse t voltage r l = 8 w - 5 20 mv vn noise output voltage c b =0.22 m f, w ith a - weight ing filter - 15 - m v (rms)
c o p y r i g h t ? a n p e c e l e c t r o n i c s c o r p . r e v . a . 2 - a p r . , 2 0 1 0 w w w . a n p e c . c o m . t w 5 a p a 0 7 1 4 t y p i c a l o p e r a t i n g c h a r a c t e r i s t i c s 0.01 10 0.1 1 10m 5 100m 1 t h d + n ( % ) output power (w) thd+n vs. output power v dd =2.4v v dd =3.6v v dd =5.0v r l =3 w f in =1khz c i =0.22 m f a v =12db bw<80khz 0.01 10 0.1 1 10m 5 100m 1 t h d + n ( % ) output power (w) thd+n vs. output power v dd =2.4v v dd =3.6v v dd =5.0v r l =4 w f in =1khz c i =0.22 m f a v =12db bw<80khz 0.01 10 0.1 1 10m 3 100m 1 t h d + n ( % ) output power (w) thd+n vs. output power v dd =2.4v v dd =3.6v v dd =5.0v r l =8 w f in =1khz c i =0.22 m f a v =12db bw<80khz 0.01 10 0.1 1 20 20k 100 1k 10k thd+n vs. frequency frequency (hz) v dd =5.0v r l =3 w c i =0.22 m f a v =12db bw<80khz t h d + n ( % ) p o =1.7w p o =1w 0.01 10 0.1 1 20 20k 100 1k 10k thd+n vs. frequency frequency (hz) v dd =5.0v r l =4 w c i =0.22 m f a v =12db bw<80khz t h d + n ( % ) p o =1.5w p o =1w 0.01 10 0.1 1 20 20k 100 1k 10k thd+n vs. frequency frequency (hz) t h d + n ( % ) p o =0.9w p o =0.5w v dd =5.0v r l =8 w c i =0.22 m f a v =12db bw<80khz
c o p y r i g h t ? a n p e c e l e c t r o n i c s c o r p . r e v . a . 2 - a p r . , 2 0 1 0 w w w . a n p e c . c o m . t w 6 a p a 0 7 1 4 t y p i c a l o p e r a t i n g c h a r a c t e r i s t i c s ( c o n t . ) 0.01 10 0.1 1 20 20k 100 1k 10k thd+n vs. frequency frequency (hz) t h d + n ( % ) p o =0.1w p o =0.7w p o =0.5w v dd =3.6v r l =4 w c i =0.22 m f a v =12db bw<80khz 0.01 10 0.1 1 20 20k 100 1k 10k thd+n vs. frequency frequency (hz) t h d + n ( % ) p o =0.1w p o =0.45w p o =0.25w v dd =3.6v r l =8 w c i =0.22 m f a v =12db bw<80khz 0.01 10 0.1 1 20 20k 100 1k 10k thd+n vs. frequency frequency (hz) t h d + n ( % ) p o =0.3w p o =0.1w v dd =2.4v r l =4 w c i =0.22 m f a v =12db bw<80khz 0.01 10 0.1 1 20 20k 100 1k 10k thd+n vs. frequency frequency (hz) t h d + n ( % ) p o =0.2w p o =0.1w v dd =2.4v r l =8 w c i =0.22 m f a v =12db bw<80khz r l =8 w ,thd+n=10% r l =3 w ,thd+n=1% r l =4 w ,thd+n=10% r l =3 w ,thd+n=10% r l =8 w ,thd+n=1% 0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 2.4 3.0 3.5 4.0 4.5 5.0 o u t p u t p o w e r ( w ) supply volume (v) output power vs. supply voltage f in =1khz a v =12db r l =4 w ,thd+n=1% 0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 3 8 13 18 23 28 32 output power vs. load resistance o u t p u t p o w e r ( w ) load resistance ( w ) f in =1khz a v =12db v dd =2.4v ,thd+n=10% v dd =2.4v ,thd+n=1% v dd =3.6v,thd+n=1% v dd =3.6v,thd+n=10% v dd =5v,thd+n=1% v dd =5v,thd+n=10%
c o p y r i g h t ? a n p e c e l e c t r o n i c s c o r p . r e v . a . 2 - a p r . , 2 0 1 0 w w w . a n p e c . c o m . t w 7 a p a 0 7 1 4 t y p i c a l o p e r a t i n g c h a r a c t e r i s t i c s ( c o n t . ) 0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.5 1.0 1.5 2.0 2.5 3.0 v dd =5v f in =1khz a v =12db r l =8 w r l =4 w r l =3 w supply current vs. output power s u p p l y c u r r e n t ( a ) output power (w) power dissipation vs. output power output power (w) p o w e r d i s s i p a t i o n ( w ) 0.0 0.5 1.0 1.5 2.0 0.0 0.5 1.0 1.5 2.0 2.5 3.0 v dd =5v f in =1khz a v =12db r l =3 w r l =4 w r l =8 w 0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.3 0.6 0.9 1.2 1.5 1.8 power dissipation vs. output power v dd =3.6v f in =1khz a v =12db r l =3 w r l =4 w r l =8 w output power (w) p o w e r d i s s i p a t i o n ( w ) 0.2 0.4 0.6 0.8 0.0 0.3 0.6 0.9 1.2 1.5 1.8 r l =8 w r l =4 w r l =3 w supply current vs. output power s u p p l y c u r r e n t ( a ) output power (w) 0.0 v dd =3.6v f in =1khz a v =12db 1u 50u 2u 3u 4u 5u 7u 10u 20u 30u 40u 20 20k 50 100 200 500 1k 2k 5k 10k output noise voltage vs. frequency o u t p u t n o i s e v o l t a g e ( v r m s ) frequency (hz) v dd =3.6v r l =8 w a v =12db c i =0.22 m f a-weighting 1u 50u 2u 3u 4u 5u 7u 10u 20u 30u 40u 20 20k 50 100 200 500 1k 2k 5k 10k output noise voltage vs. frequency o u t p u t n o i s e v o l t a g e ( v r m s ) frequency (hz) v dd =5.0v r l =8 w a v =12db c i =0.22 m f a-weighting
c o p y r i g h t ? a n p e c e l e c t r o n i c s c o r p . r e v . a . 2 - a p r . , 2 0 1 0 w w w . a n p e c . c o m . t w 8 a p a 0 7 1 4 t y p i c a l o p e r a t i n g c h a r a c t e r i s t i c s ( c o n t . ) +60 +260 +100 +140 +180 +220 +4 +14 +6 +8 +10 +12 10 200k 100 1k 10k frequency response frequency (hz) g a i n ( d b ) p h a s e ( d e g ) v dd =5.0v a v =12db r l =8 w c i =0.22 m f gain phase -100 +0 -90 -80 -70 -60 -50 -40 -30 -20 -10 20 20k 100 1k 10k frequency (hz) psrr vs. frequency p o w e r s u p p l y r e j e c t i o n r a t i o ( d b ) v dd =3.6v r l =8 w a v =12db c i =0.22 m f v rr =0.2v rms c b =0.1 m f c b =0.01 m f c b =1 m f c b =0.47 m f -80 +0 -70 -60 -50 -40 -30 -20 -10 20 20k 100 1k 10k cmrr vs. frequency c o m m o n m o d e r e j e c t i o n r a t i o ( d b ) frequency (hz) r l =8 w a v =12db v in =0.2v pp c i =0.22 m f v dd =2.4v v dd =3.6v v dd =5.0v 1u 50u 2u 3u 4u 5u 7u 10u 20u 30u 40u 20 20k 100 1k 10k output noise voltage vs. frequency o u t p u t n o i s e v o l t a g e ( v r m s ) frequency (hz) v dd =2.4v r l =8 w a v =12db c i =0.22 m f a-weighting -100 +0 -90 -80 -70 -60 -50 -40 -30 -20 -10 1 5 2 3 4 cmrr vs. common mode input voltage c o m m o n m o d e r e j e c t i o n r a t i o ( d b ) common mode input voltage (vrms) r l =8 w a v =12db f in =1khz c i =0.22 m f v dd =2.4v v dd =3.6v v dd =5.0v -100 +0 -90 -80 -70 -60 -50 -40 -30 -20 -10 20 20k 100 1k 10k frequency (hz) psrr vs. frequency p o w e r s u p p l y r e j e c t i o n r a t i o ( d b ) r l =8 w a v =12db c b =0.22 m f c i =0.22 m f v rr =0.2v rms v dd =2.4v v dd =3.6v v dd =5.0v
c o p y r i g h t ? a n p e c e l e c t r o n i c s c o r p . r e v . a . 2 - a p r . , 2 0 1 0 w w w . a n p e c . c o m . t w 9 a p a 0 7 1 4 t y p i c a l o p e r a t i n g c h a r a c t e r i s t i c s ( c o n t . ) 0 50 100 150 200 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 bypass capacitor ( m f) s t a r t - u p t i m e ( m s ) start-up time vs. bypass capacitor v dd =5.0v av=12db no load +60 +260 +100 +140 +180 +220 +4 +14 +6 +8 +10 +12 10 200k 100 1k 10k frequency response frequency (hz) g a i n ( d b ) p h a s e ( d e g ) gain phase v dd =3.6v a v =12db r l =8 w c i =0.22 m f +60 +260 +100 +140 +180 +220 +4 +14 +6 +8 +10 +12 10 200k 100 1k 10k frequency response frequency (hz) g a i n ( d b ) p h a s e ( d e g ) gain phase v dd =2.4v a v =12db r l =8 w c i =0.22 m f -160 +0 -120 -80 -40 0 2k 400 800 1.2k 1.6k -160 +0 -120 -80 -40 s u p p l y v o l t a g e ( d b v ) o u t p u t v o l t a g e ( d b v ) frequency (hz) gsm power supply rejection vs. frequency 1 2 3 4 5 0 2.4 3.0 3.5 4.0 4.5 5.0 5.5 supply voltage (v) s u p p l y c u r r e n t ( m a ) av=12db no load supply current vs. supply voltage
c o p y r i g h t ? a n p e c e l e c t r o n i c s c o r p . r e v . a . 2 - a p r . , 2 0 1 0 w w w . a n p e c . c o m . t w 1 0 a p a 0 7 1 4 o p e r a t i n g w a v e f o r m s 1 2 ch1: v dd , 100mv/div, dc ch2: v out , 20mv/div, dc vottage offset = 5.0v v dd v out time: 2 ms/div gsm power supply rejection vs. time 1 2 v dd ch1: v dd , 2v/div, dc ch2: v out , 50mv/div, dc time: 20 ms/div v out power on 1 2 ch1: v dd , 2v/div, dc ch2: v out , 50mv/div, dc time: 50 ms/div v out v dd power off 1 2 ch1: v sd , 2v/div, dc ch2: v outn , 2v/div, dc time: 20 ms/div v outn v sd shutdown release
c o p y r i g h t ? a n p e c e l e c t r o n i c s c o r p . r e v . a . 2 - a p r . , 2 0 1 0 w w w . a n p e c . c o m . t w 1 1 a p a 0 7 1 4 o p e r a t i n g w a v e f o r m s ( c o n t . ) 1 2 ch1: v sd , 2v/div, dc ch2: v outn , 2v/div, dc time: 20 ms/div v outn v sd shutdown p i n d e s c r i p t i o n pin no. name i/o/p f unction 1 sd i s hutdown mode control signal input, place left channel speaker amplifier in shutdown mode when held low. 2 bypass p bypass voltage input pin 3 inp i t he non - inverting input of amplifier . in p is via a capacitor to g nd for single - end ( se) input signal. 4 inn i t he inverting input of amplifier . in n is used as audio input terminal, typically. 5 routp o the positive output terminal of speaker amplifier. 6 vdd p supply voltage input pin 7 gnd p ground connection for c ircuitry. 8 loutn o the negative output terminal of speaker amplifier.
c o p y r i g h t ? a n p e c e l e c t r o n i c s c o r p . r e v . a . 2 - a p r . , 2 0 1 0 w w w . a n p e c . c o m . t w 1 2 a p a 0 7 1 4 b l o c k d i a g r a m outp linp linn bypass bias and c ontrol c ircuitry s sd outn
c o p y r i g h t ? a n p e c e l e c t r o n i c s c o r p . r e v . a . 2 - a p r . , 2 0 1 0 w w w . a n p e c . c o m . t w 1 3 a p a 0 7 1 4 t y p i c a l a p p l i c a t i o n c i r c u i t s single-ended input mode input 0.22 m f 0.22 m f shutdown control 4w v dd 0.1 m f 10 m f c i1 c i2 5 outp inp 3 inn 4 8 outn bias and c ontrol c ircuitry s 2 bypass sd 1 6 vdd 7 gnd r f1 r f2 r i1 r i2 40k w 40k w 10k w 10k w c b 0.22 m f c s1 c s2 r sd 100k w
c o p y r i g h t ? a n p e c e l e c t r o n i c s c o r p . r e v . a . 2 - a p r . , 2 0 1 0 w w w . a n p e c . c o m . t w 1 4 a p a 0 7 1 4 t y p i c a l a p p l i c a t i o n c i r c u i t s ( c o n t . ) differential input mode input 0.22 m f 0.22 m f shutdown control 4w v dd 0.1 m f 10 m f c i1 c i2 5 outp inp 3 inn 4 8 outn bias and c ontrol c ircuitry s 2 bypass sd 1 6 vdd 7 gnd r f1 r f2 r i1 r i2 40k w 40k w 10k w 10k w c b 0.22 m f c s1 c s2 r sd 100k w
c o p y r i g h t ? a n p e c e l e c t r o n i c s c o r p . r e v . a . 2 - a p r . , 2 0 1 0 w w w . a n p e c . c o m . t w 1 5 a p a 0 7 1 4 f u n c t i o n d e s c r i p t i o n f u l l y d i f f e r e n t i a l a m p l i f i e r t h e p o w e r a m p l i f i e r s a r e f u l l y d i f f e r e n t i a l a m p l i f i e r s w i t h d i f f e r e n t i a l i n p u t s a n d o u t p u t s . t h e f u l l y d i f f e r e n t i a l a m p l i - f i e r h a s s o m e a d v a n t a g e s v e r s u s t r a d i t i o n a l a m p l i f i e r s . f i r s t , d o n ? t n e e d t h e i n p u t c o u p l i n g c a p a c i t o r s b e c a u s e t h e c o m m o n - m o d e f e e d b a c k c o m p e n s a t e s t h e i n p u t b i a s . t h e i n p u t s c a n b e b i a s e d f r o m 0 . 5 v ~ v d d - 0 . 5 v , a n d t h e o u t p u t s a r e s t i l l b i a s e d a t m i d - s u p p l y o f t h e p o w e r a m p l i f i e r . i f t h e i n p u t s a r e b i a s e d a t o u t o f t h e i n p u t r a n g e , t h e c o u p l i n g c a p a c i t o r s a r e r e q u i r e d . s e c o n d , t h e f u l l y d i f f e r e n t i a l a m p l i f i e r h a s o u t s t a n d i n g i m m u n i t y a g a i n s t s u p p l y v o l t a g e r i p p l e ( 2 1 7 h z ) c u a s e d b y t h e g s m r f t r a n s - m i t t e r s s i g n a l w h i c h i s b e t t e r t h a n t h e t y p i c a l a u d i o a m p l i f i e r . s h u t d o w n f u n c t i o n t h e o v e r - t e m p e r a t u r e c i r c u i t l i m i t s t h e j u n c t i o n t e m p e r a - t u r e o f t h e a p a 0 7 1 4 . w h e n t h e j u n c t i o n t e m p e r a t u r e e x - c e e d s t j = + 1 5 0 o c , a t h e r m a l s e n s o r t u r n s o f f t h e a m p l i f i e r s , a l l o w i n g t h e d e v i c e t o c o o l . t h e t h e r m a l s e n - s o r a l l o w s t h e a m p l i f i e r s t o s t a r t - u p a f t e r t h e j u n c t i o n t e m - p e r a t u r e c o o l s d o w n t o a b o u t 1 2 5 o c . t h e t h e r m a l p r o t e c - t i o n i s d e s i g n e d w i t h a 2 5 o c h y s t e r e s i s t o l o w e r t h e a v e r - a g e t j d u r i n g c o n t i n u o u s t h e r m a l o v e r l o a d c o n d i t i o n s , i n c r e a s i n g l i f e t i m e o f t h e i c . t h e r m a l p r o t e c t i o n o v e r - c u r r e n t p r o t e c t i o n the a p a 0 7 1 4 monitors the output buffers current. when the over current occurs, the output buffers current will be reduced and limited to a fold-back current level. the power amplifier will go back to normal operation until the over-current current situation has been removed. in addition, if the over-current period is long enough and the ic?s junction temperature reaches the thermal protection threshold, the ic enters thermal protection mode. in order to reduce power consumption while not in use, the apa0714 contains a shutdown function to externally turn off the amplifier bias circuitry. this shutdown feature turns the amplifier off when logic low is placed on the sd pin for apa0714. the trigger point between a logic high and logic low level is typically 1.8v. it is best to switch between ground and the supply voltage vdd to provide maximum device performance. by switching the sd pin to low level, the amplifier enters a low-consumption-cur- rent state, idd for apa0714 is in shutdown mode. under normal operating, apa0714?s sd pin should pull to high level to keep the ic out of the shutdown mode. the sd pin should be tied to a definite voltage to avoid unwanted state change.
c o p y r i g h t ? a n p e c e l e c t r o n i c s c o r p . r e v . a . 2 - a p r . , 2 0 1 0 w w w . a n p e c . c o m . t w 1 6 a p a 0 7 1 4 e f f e c t i v e b y p a s s c a p a c i t o r ( c b y p a s s ) t h e b y p a s s p i n s e t s t h e v d d / 2 f o r i n t e r n a l r e f e r e n c e b y v o l t a g e d i v i d e r . a d d i n g c a p a c i t o r s a t t h i s p i n t o f i l t e r t h e n o i s e a n d r e g u l a t o r t h e m i d - s u p p l y r a i l w i l l i n c r e a s e t h e p s r r a n d n o i s e p e r f o r m a n c e . t h e c a p a c i t o r s s h o u l d b e a s c l o s e t o t h e d e v i c e a s p o s s i b l e . t h e e f f e c t o f a l a r g e r b y p a s s c a p a c i t o r w i l l i m - p r o v e p s r r d u e t o i n c r e a s e d s u p p l y s t a b i l i t y . t h e b y p a s s c a p a c i t a n c e a l s o a f f e c t s t o t h e s t a r t t i m e . t h e l a r g e c a p a c i t o r s w i l l i n c r e a s e t h e s t a r t t i m e w h e n d e v i c e i n s h u t d o w n . optimizing depop circuitry c i r c u i t r y h a s b e e n i n c l u d e d i n t h e a p a 0 7 1 4 t o m i n i m i z e t h e a m o u n t o f p o p p i n g n o i s e a t p o w e r - u p a n d w h e n c o m - i n g o u t o f s h u t d o w n m o d e . p o p p i n g o c c u r s w h e n e v e r a v o l t a g e s t e p i s a p p l i e d t o t h e s p e a k e r . i n o r d e r t o e l i m i - n a t e c l i c k s a n d p o p s , a l l c a p a c i t o r s m u s t b e f u l l y d i s - c h a r g e d b e f o r e t u r n - o n . r a p i d o n / o f f s w i t c h i n g o f t h e d e - v i c e o r t h e s h u t d o w n f u n c t i o n w i l l c a u s e t h e c l i c k a n d p o p c i r c u i t r y . t h e v a l u e o f c i w i l l a l s o a f f e c t t u r n - o n p o p s . t h e b y p a s s v o l t a g e r a m p u p s h o u l d b e s l o w e r t h a n i n p u t b i a s v o l t a g e . although the bypass pin current source cannot be modified, the size of c bypass can be changed to alter the device turn-on time and the amount of clicks and pops. by increasing the value of c bypass , turn-on pop can be reduced. however, the tradeoff for using a larger bypass capacitor is to increase the turn-on time for this device. there is a linear relationship between the size of c bypass and the turn-on time. a h i g h g a i n a m p l i f i e r i n t e n s i f i e s t h e p r o b l e m a s t h e s m a l l d e l t a i n v o l t a g e i s m u l t i p l i e d b y t h e g a i n . h e n c e , i t i s a d - v a n t a g e o u s t o u s e l o w - g a i n c o n f i g u r a t i o n s . p o w e r s u p p l y d e c o u p l i n g c a p a c i t o r ( c s ) t h e a p a 0 7 1 4 i s a h i g h - p e r f o r m a n c e c m o s a u d i o a m p l i - f i e r t h a t r e q u i r e s a d e q u a t e p o w e r s u p p l y d e c o u p l i n g t o e n s u r e t h e o u t p u t t o t a l h a r m o n i c d i s t o r t i o n ( t h d + n ) i s a s l o w a s p o s s i b l e . p o w e r s u p p l y d e c o u p l i n g a l s o p r e - t h i s l e a k a g e c u r r e n t c r e a t e s a d c o f f s e t v o l t a g e a t t h e i n p u t o f t h e a m p l i f i e r . t h e o f f s e t r e d u c e s u s e f u l h e a d r o o m , e s p e c i a l l y i n h i g h g a i n a p p l i c a t i o n s . f o r t h i s r e a s o n , a l o w - l e a k a g e t a n t a l u m o r c e r a m i c c a p a c i t o r i s t h e b e s t c h o i c e . w h e n p o l a r i z e d c a p a c i t o r s a r e u s e d , t h e p o s i t i v e s i d e o f t h e c a p a c i t o r s h o u l d f a c e t h e a m p l i f i e r i n p u t i n m o s t a p p l i c a t i o n s b e c a u s e t h e d c l e v e l o f t h e a p p l i c a t i o n i n f o r m a t i o n i n p u t r e s i s t a n c e ( r i ) the gain for the a p a 0 7 1 4 is set by the external input re- sistors (r i ) and internal feedback resistors (r f ). i f v r r a = (1) the internal feedback resistors are 40k w typical. for the performance of a fully differential amplifier, it?s better to select matching input resistors r i1 and r i2 . therefore, 1% tolerance resistors are recommended. if the input resistors are not matched, the cmrr and psrr perfor- mance are worse than using matching devices. i n p u t c a p a c i t o r ( c i ) w h e n t h e a p a 0 7 1 4 i s d r i v e n b y a d i f f e r e n t i a l i n p u t s o u r c e , t h e i n p u t c a p a c i t o r m a y n o t b e r e q u i r e d . i n t h e s i n g l e - e n d e d i n p u t a p p l i c a t i o n , a n i n p u t c a p a c i t o r , c i , i s r e q u i r e d t o a l l o w t h e a m p l i f i e r t o b i a s t h e i n p u t s i g - n a l t o t h e p r o p e r d c l e v e l f o r o p t i m u m o p e r a t i o n . i n t h i s c a s e , c i a n d t h e i n p u t r e s i s t a n c e r i f o r m a h i g h - p a s s f i l t e r w i t h t h e c o r n e r f r e q u e n c y d e t e r m i n e d i n t h e f o l l o w i n g e q u a t i o n : i i ) c(highpass c r 2 1 f p = (2) t h e v a l u e o f c i m u s t b e c o n s i d e r e d c a r e f u l l y b e c a u s e i t d i r e c t l y a f f e c t s t h e l o w f r e q u e n c y p e r f o r m a n c e o f t h e c i r c u i t . c o n s i d e r t h e e x a m p l e w h e r e r i i s 1 0 k w a n d t h e s p e c i f i - c a t i o n t h a t c a l l s f o r a f l a t b a s s r e s p o n s e d o w n t o 1 0 0 h z . t h e e q u a t i o n i s r e c o n f i g u r e d b e l o w : c i i f r 2 1 c p = (3) w h e n t h e i n p u t r e s i s t a n c e v a r i a t i o n i s c o n s i d e r e d , t h e c i i s 0 . 1 6 m f . s o a v a l u e i n t h e r a n g e o f 0 . 2 2 m f t o 0 . 4 7 m f w o u l d b e c h o s e n . a f u r t h e r c o n s i d e r a t i o n f o r t h i s c a p a c i - t o r i s t h e l e a k a g e p a t h f r o m t h e i n p u t s o u r c e t h r o u g h t h e i n p u t n e t w o r k ( r i + r f , c i ) t o t h e l o a d . a m p l i f i e r s ? i n p u t s a r e h e l d a t v d d / 2 . p l e a s e n o t e t h a t i t i s i m p o r t a n t t o c o n f i r m t h e c a p a c i t o r p o l a r i t y i n t h e a p p l i c a t i o n .
c o p y r i g h t ? a n p e c e l e c t r o n i c s c o r p . r e v . a . 2 - a p r . , 2 0 1 0 w w w . a n p e c . c o m . t w 1 7 a p a 0 7 1 4 r l ( w ) p o (w) efficiency (%) i dd (a) p d (w) p sup (w) 0.25 30.1 0.17 0.58 0.83 0.50 43.1 0.23 0.66 1.16 1 61.5 0.33 0.63 1.63 8 1.6 77.7 0.43 0.46 2.06 0.4 27.5 0.29 1.06 1.46 1.2 48.1 0.51 1.30 2.50 2 62.4 0.66 1.21 3.21 4 2.6 74.1 0.70 0.9 1 3.51 0.5 27.5 0.37 1.32 1.82 1 38.7 0.52 1.58 2.58 2 55.1 0.74 1.63 3.63 3 3 66.8 0.92 1.49 4.49 a p p l i c a t i o n i n f o r m a t i o n ( c o n t . ) l a y o u t r e c o m m e n d a t i o n 1 . a l l c o m p o n e n t s s h o u l d b e p l a c e d c l o s e t o t h e a p a 0 7 1 4 . f o r e x a m p l e , t h e i n p u t c a p a c i t o r ( c i ) s h o u l d b e c l o s e t o a p a 0 7 1 4 ? s i n p u t p i n s t o a v o i d c a u s i n g n o i s e c o u p l i n g t o a p a 0 7 1 4 ? s h i g h i m p e d a n c e i n p u t s ; t h e d e c o u p l i n g c a - p a c i t o r ( c s ) s h o u l d b e p l a c e d b y t h e a p a 0 7 1 4 ? s p o w e r p i n t o d e c o u p l e t h e p o w e r r a i l n o i s e . 2 . t h e o u t p u t t r a c e s s h o u l d b e s h o r t , w i d e ( > 5 0 m i l ) , a n d s y m m e t r i c . 3 . t h e i n p u t t r a c e s h o u l d b e s h o r t a n d s y m m e t r i c . 4 . t h e p o w e r t r a c e w i d t h s h o u l d g r e a t e r t h a n 5 0 m i l . 5 . the msop-8p and dfn3x3-8 thermal pad should b e s o l d e r e d o n p c b , a n d t h e g r o u n d p l a n e n e e d s s o l d e r e d m a s k ( t o a v o i d s h o r t c i r c u i t ) e x c e p t t h e t h e r m a l p a d a r e a . a f i n a l p o i n t t o r e m e m b e r a b o u t l i n e a r a m p l i f i e r s ( e i t h e r s e o r d i f f e r e n t i a l ) i s h o w t o m a n i p u l a t e t h e t e r m s i n t h e e f f i c i e n c y e q u a t i o n t o a n u t m o s t a d v a n t a g e w h e n p o s s i b l e . n o t e t h a t i n e q u a t i o n , v d d i s i n t h e d e n o m i n a t o r . t h i s i n d i - c a t e s t h a t a s v d d g o e s d o w n , e f f i c i e n c y g o e s u p . i n o t h e r w o r d s , u s e t h e e f f i c i e n c y a n a l y s i s t o c h o o s e t h e c o r r e c t s u p p l y v o l t a g e a n d s p e a k e r i m p e d a n c e f o r t h e a p p l i c a t i o n . table 1 calculates efficiencies for four different output power levels. note that the efficiency of the amplifier is quite low for lower power levels and rises sharply as power to the load is increased resulting in nearly flat in- ternal power dissipation over the normal operating range. note that the internal dissipation at full output power is t h e o p t i m u m d e c o u p l i n g i s a c h i e v e d b y u s i n g t w o d i f f e r - e n t t y p e s o f c a p a c i t o r s t h a t t a r g e t o n d i f f e r e n t t y p e s o f n o i s e s o n t h e p o w e r s u p p l y l e a d s . f o r h i g h e r f r e q u e n c y t r a n s i e n t s , s p i k e s , o r d i g i t a l h a s h o n t h e l i n e , a g o o d l o w e q u i v a l e n t - s e r i e s - r e s i s t a n c e ( e s r ) c e r a m i c c a p a c i t o r , t y p i c a l l y 0 . 1 m f , i s p l a c e d a s c l o s e a s p o s s i b l e t o t h e d e - v i c e v d d l e a d w o r k s b e s t . f o r f i l t e r i n g l o w e r f r e q u e n c y n o i s e s i g n a l s , a l a r g e a l u m i n u m e l e c t r o l y t i c c a p a c i t o r o f 1 0 m f o r g r e a t e r p l a c e d n e a r t h e a u d i o p o w e r a m p l i f i e r i s r e c o m m e n d e d . f u l l y d i f f e r e n t i a l a m p l i f i e r e f f i c i e n c y t h e t r a d i t i o n a l c l a s s a b p o w e r a m p l i f i e r e f f i c i e n c y c a n b e c a l c u l a t e d s t a r t s o u t a s b e i n g e q u a l t o t h e r a t i o o f p o w e r f r o m t h e p o w e r s u p p l y t o t h e p o w e r d e l i v e r e d t o t h e l o a d . t h e f o l l o w i n g e q u a t i o n s a r e t h e b a s i s f o r c a l c u l a t i n g t h e a m p l i f i e r e f f i c i e n c y . where: so the efficiency ( h ) is: p o w e r s u p p l y d e c o u p l i n g c a p a c i t o r ( c s ) ( c o n t . ) sup o p p ) ( efficiency = h l 2 p l 2 orms o r 2 v r v p = = 2 v v p orms = l pp dd avg dd dd sup r v 2v xi v p p = ? ?^ ?] l p avg) dd r 2v i p = ?] dd l o dd p 4v r 2p 4v v ) ( efficiency p p = h ? (4) (5) (6) less than the dissipation in the half power range. calcu- lating the efficiency for a specific system is the key to proper power supply design. for a mono 1w audio sys- tem with 8 w loads and a 5v supply, the maximum draw on the power supply is almost 1.63w. t a b l e 1 : e f f i c i e n c y v s . o u t p u t p o w e r i n 5 - v d i f f e r e n t i a l a m p l i f i e r s y e t e m s v e n t s t h e o s c i l l a t i o n s c a u s e d b y l o n g l e a d l e n g t h b e t w e e n t h e a m p l i f i e r a n d t h e s p e a k e r .
c o p y r i g h t ? a n p e c e l e c t r o n i c s c o r p . r e v . a . 2 - a p r . , 2 0 1 0 w w w . a n p e c . c o m . t w 1 8 a p a 0 7 1 4 a p p l i c a t i o n i n f o r m a t i o n ( c o n t . ) l a y o u t r e c o m m e n d a t i o n ( c o n t . ) f i g u r e 1 : t d f n 3 x 3 - 8 l a n d p a t t e r n r e c o m m e n d a t i o n 1.4mm 1 . 8 5 m m 0.38mm 3.3mm 0.65mm 0.7mm ground plane for thermal pad solder mask to prevent short circuit thermalvia diameter 0.3mm x 5 1 . 9 5 m m
c o p y r i g h t ? a n p e c e l e c t r o n i c s c o r p . r e v . a . 2 - a p r . , 2 0 1 0 w w w . a n p e c . c o m . t w 1 9 a p a 0 7 1 4 p a c k a g e i n f o r m a t i o n msop-8 a 0 l view a 0 . 2 5 gauge plane seating plane a 1 d e see view a e 1 e a 2 b c s y m b o l min. max. 1.10 0.00 0.22 0.38 0.08 0.23 0.15 a a1 b c d e e1 e l millimeters a2 0.75 0.95 0.65 bsc msop-8 0.40 0.80 0.026 bsc min. max. inches 0.043 0.000 0.030 0.037 0.009 0.015 0.003 0.009 0.016 0.031 0 0.006 0 8 0 8 4.70 5.10 2.90 3.10 2.90 3.10 0.114 0.122 0.185 0.201 0.114 0.122 note: 1. follow jedec mo-187 aa. 2. dimension ? d ? does not include mold flash, protrusions or gate burrs. mold flash, protrusion or gate burrs shall not exceed 6 mil per side. 3. dimension ? e1 ? does not include inter-lead flash or protrusions. inter-lead flash and protrusions shall not exceed 5 mil per side.
c o p y r i g h t ? a n p e c e l e c t r o n i c s c o r p . r e v . a . 2 - a p r . , 2 0 1 0 w w w . a n p e c . c o m . t w 2 0 a p a 0 7 1 4 p a c k a g e i n f o r m a t i o n ( c o n t . ) m s o p - 8 p a 0 l view a 0 . 2 5 seating plane gauge plane a 1 d e see view a e 1 e a 2 b c d1 e 2 exposed pad s y m b o l min. max. 1.10 0.00 0.22 0.38 0.08 0.23 0.15 a a1 b c d e e1 e l millimeters a2 0.75 0.95 0.65 bsc msop-8p 0.40 0.80 0.026 bsc min. max. inches 0.043 0.000 0.030 0.037 0.009 0.015 0.003 0.009 0.016 0.031 0 0.006 d1 e2 1.50 2.50 0.059 0.098 1.50 2.50 0.059 0.098 0 8 0 8 2.90 3.10 2.90 3.10 4.70 5.10 0.114 0.122 0.185 0.201 0.114 0.122 note: 1. follow jedec mo-187 aa-t 2. dimension ? d ? does not include mold flash, protrusions or gate burrs. mold flash, protrusion or gate burrs shall not flash or protrusions. 3. dimension ? e1 ? does not include inter-lead flash or protrusions. inter-lead flash and protrusions shall not exceed 6 mil per side.
c o p y r i g h t ? a n p e c e l e c t r o n i c s c o r p . r e v . a . 2 - a p r . , 2 0 1 0 w w w . a n p e c . c o m . t w 2 1 a p a 0 7 1 4 p a c k a g e i n f o r m a t i o n ( c o n t . ) t d f n 3 x 3 - 8 d e pin 1 a b a1 a3 s y m b o l min. max. 0.80 0.00 0.25 0.35 1.90 2.40 0.05 1.40 a a1 b d d2 e e2 e l millimeters a3 0.20 ref tdfn3x3-8 0.30 0.50 1.75 0.008 ref min. max. inches 0.031 0.000 0.010 0.014 0.075 0.094 0.055 0.012 0.020 0.70 0.069 0.028 0.002 0.65 bsc 0.026 bsc 0.20 0.008 k 2.90 3.10 0.114 0.122 2.90 3.10 0.114 0.122 pin 1 corner d2 e e 2 k l
c o p y r i g h t ? a n p e c e l e c t r o n i c s c o r p . r e v . a . 2 - a p r . , 2 0 1 0 w w w . a n p e c . c o m . t w 2 2 a p a 0 7 1 4 application a h t1 c d d w e1 f 330.0 ? 2.00 50 min. 12.4+2.00 - 0.00 13.0+0.50 - 0.20 1.5 min. 20.2 min. 12.0 ? 0.30 1.75 ? 0.10 5.5 ? 0.05 p 0 p1 p 2 d 0 d1 t a 0 b 0 k 0 msop - 8 4.00 ? 0.10 8.00 ? 0.10 2.00 ? 0.05 1.5+0.10 - 0.00 1.5 min. 0.6+0.00 - 0.40 5.30 ? 0.20 3.30 ? 0.20 1.40 ? 0.20 application a h t1 c d d w e1 f 330.0 ? 2.00 50 min. 12.4+2.00 - 0.00 13.0+0.50 - 0.20 1.5 min. 20.2 min. 12.0 ? 0.30 1.75 ? 0.10 5.5 ? 0.05 p 0 p1 p 2 d 0 d1 t a 0 b 0 k 0 msop - 8p 4.00 ? 0.10 8.00 ? 0.10 2.00 ? 0.05 1.5+0.10 - 0.00 1.5 min. 0.6+0.00 - 0.40 5.30 ? 0.20 3.30 ? 0.20 1.40 ? 0.20 application a h t1 c d d w e1 f 178.0 ? 2.00 50 min. 12.4+2.00 - 0.00 13.0+0.50 - 0.20 1.5 min. 20.2 min. 12.0 ? 0.30 1.75 ? 0.10 5.5 ? 0.05 p 0 p1 p 2 d 0 d1 t a 0 b 0 k 0 tdfn3x3 - 8 4.0 ? 0.10 8.0 ? 0.10 2.0 ? 0.05 1.5+0.10 - 0.00 1.5 min. 0.6+0.00 - 0.40 3.30 ? 0.2 0 3.30 ? 0.20 1.30 ? 0.20 (mm) c a r r i e r t a p e & r e e l d i m e n s i o n s a e 1 a b w f t p0 od0 b a0 p2 k0 b 0 section b-b section a-a od1 p1 h t1 a d
c o p y r i g h t ? a n p e c e l e c t r o n i c s c o r p . r e v . a . 2 - a p r . , 2 0 1 0 w w w . a n p e c . c o m . t w 2 3 a p a 0 7 1 4 package type unit quantity mosp - 8 tape & reel 3000 mosp - 8p tape & reel 3000 tdfn3x3 - 8 tape & reel 3000 d e v i c e s p e r u n i t t a p i n g d i r c e t i o n i n f o r m a t i o n msop-8(p) t d f n 3 x 3 - 8 user direction of feed user direction of feed
c o p y r i g h t ? a n p e c e l e c t r o n i c s c o r p . r e v . a . 2 - a p r . , 2 0 1 0 w w w . a n p e c . c o m . t w 2 4 a p a 0 7 1 4 profile feature sn - pb eutectic assembly pb - free assembly preheat & soak temperature min (t smin ) temperature max (t smax ) time (t smin to t smax ) ( t s ) 100 c 150 c 60 - 120 seconds 150 c 200 c 60 - 1 2 0 seconds average ramp - up rate (t smax to t p ) 3 c/second ma x. 3 c/second max. liquidous temperature ( t l ) time at l iquidous (t l ) 183 c 60 - 150 seconds 217 c 60 - 150 seconds peak package body temperature (t p ) * see classification temp in table 1 see classification temp in table 2 time (t p ) ** within 5 c of the spec ified c lassification t emperature ( t c ) 2 0 ** seconds 3 0 ** seconds average r amp - down rate (t p to t smax ) 6 c/second max. 6 c/second max. time 25 c to p eak t emperature 6 minutes max. 8 minutes max. * tolerance for peak profile temperature (t p ) is defined a s a supplier minimum and a user maximum. ** tolerance for time at peak profile temperature (t p ) is defined as a supplier minimum and a user maximum. c l a s s i f i c a t i o n r e f l o w p r o f i l e s c l a s s i f i c a t i o n p r o f i l e
c o p y r i g h t ? a n p e c e l e c t r o n i c s c o r p . r e v . a . 2 - a p r . , 2 0 1 0 w w w . a n p e c . c o m . t w 2 5 a p a 0 7 1 4 c u s t o m e r s e r v i c e a n p e c e l e c t r o n i c s c o r p . head office : no.6, dusing 1st road, sbip, hsin-chu, taiwan tel : 886-3-5642000 fax : 886-3-5642050 t a i p e i b r a n c h : 2 f , n o . 1 1 , l a n e 2 1 8 , s e c 2 j h o n g s i n g r d . , s i n d i a n c i t y , t a i p e i c o u n t y 2 3 1 4 6 , t a i w a n t e l : 8 8 6 - 2 - 2 9 1 0 - 3 8 3 8 f a x : 8 8 6 - 2 - 2 9 1 7 - 3 8 3 8 c l a s s i f i c a t i o n r e f l o w p r o f i l e s ( c o n t . ) table 1. snpb eutectic process ? classification temperatures (tc) package thickness volume mm 3 <350 volume mm 3 3 350 <2.5 mm 235 c 22 0 c 3 2.5 mm 220 c 220 c table 2. pb - free process ? classification temperatures (tc) package thickness volume mm 3 <350 volume mm 3 350 - 2000 volume mm 3 >2000 <1.6 mm 260 c 260 c 260 c 1.6 mm ? 2.5 mm 260 c 250 c 245 c 3 2.5 mm 250 c 245 c 245 c r e l i a b i l i t y t e s t p r o g r a m test item method description solderability jesd - 22, b102 5 sec, 245 c holt jesd - 22, a108 1000 hrs, bias @ t j =125 c pct jesd - 22, a102 168 hrs, 100 % rh, 2atm , 121 c tct jesd - 22, a104 500 cycles, - 65 c~150 c hbm mil - std - 883 - 3015.7 vhbm ? 2kv mm jesd - 22, a1 15 vmm ? 200v latch - up jesd 78 10ms, 1 tr ? 100ma


▲Up To Search▲   

 
Price & Availability of APA0714XI-TRG

All Rights Reserved © IC-ON-LINE 2003 - 2022  

[Add Bookmark] [Contact Us] [Link exchange] [Privacy policy]
Mirror Sites :  [www.datasheet.hk]   [www.maxim4u.com]  [www.ic-on-line.cn] [www.ic-on-line.com] [www.ic-on-line.net] [www.alldatasheet.com.cn] [www.gdcy.com]  [www.gdcy.net]


 . . . . .
  We use cookies to deliver the best possible web experience and assist with our advertising efforts. By continuing to use this site, you consent to the use of cookies. For more information on cookies, please take a look at our Privacy Policy. X